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Abstract A data mining based procedure for automated reverse engineering has been developed.  The data mining 
algorithm for reverse engineering uses a genetic program (GP) as a data mining function.  A genetic 
program is an algorithm based on the theory of evolution that automatically evolves populations of 
computer programs or mathematical expressions, eventually selecting one that is optimal in the sense it 
maximizes a measure of effectiveness, referred to as a fitness function.  The system to be reverse engineered 
is typically a sensor.  Design documents for the sensor are not available and conditions prevent the sensor 
from being taken apart.  The sensor is used to create a database of input signals and output measurements.  
Rules about the likely design properties of the sensor are collected from experts.  The rules are used to 
create a fitness function for the genetic program.  Genetic program based data mining is then conducted.  
This procedure incorporates not only the experts’ rules into the fitness function, but also the information in 
the database.  The information extracted through this process is the internal design specifications of the 
sensor.  Significant mathematical formalism and experimental results related to GP based data mining for 
reverse engineering will be provided.   

 
1 INTRODUCTION 

An engineer must design a signal that will yield a 
particular type of output from a sensor device (SD).  
The engineer does not have design specifications for 
the sensor system and the machine may not be 
disassembled or invasively examined.  The engineer 
might attempt to find the correct signal through trial 
and error, but this would be very time consuming 
and access to experimental resources is very 
expensive.  To deal with this problem a genetic 
program (GP) based data mining (DM) procedure 
has been invented (Smith 2005). 

A genetic program is an algorithm based on the 
theory of evolution that automatically evolves 
populations of computer programs or mathematical 
expressions, eventually selecting one that is optimal 
in the sense it maximizes a measure of effectiveness, 
referred to as a fitness function (Koza 1999; Smith 
2003a, 2003b, 2004).  The system to be reverse 
engineered is typically a sensor.  The sensor is used 
to create a database of input signals and output 
measurements.  Rules about the likely design 

properties of the sensor are collected from experts.  
The rules are used to create a fitness function for the 
genetic program.  Genetic program based data 
mining is then conducted (Bigus 1996, Smith 2003a, 
2003b, 2004).  This procedure incorporates not only 
experts’ rules into the fitness function, but also the 
information in the database.  The information 
extracted through this process is the internal design 
specifications of the sensor.  The design properties 
extracted through this process can be used to design 
a signal that will produce a desired output (Smith 
2005).  Determination of such signals can be 
essential to ultimate determination of control rules 
for automatic multiplatform coordination (Smith 
2003a, 2003b, 2004). 

GPs require a terminal set and function set as 
inputs.  The terminals are the actual variables of the 
problem.  These can include a variable like “x” used 
as a symbol in building a polynomial and also real 
constants.  The function set consists of a list of 
functions that can operate on the variables.  When a 
GP was used as a DM function in the past to 
automatically create fuzzy decision trees, the 
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terminals consisted of fuzzy root concepts and the 
functions consisted of fuzzy logical connectives and 
fuzzy modifiers (Smith 2003a, 2003b, 2004). 

When the GP is used as a data mining function, a 
database of input and output information is required.  
When the GP is used as a data mining function for 
evolving digital logic (DL), the database contains 
inputs to the DL as well as measured outputs.  The 
experts’ opinions are manifested in the selection of 
the input and associated output to be included in the 
database.  For the DL case an additional form of 
input consisting of “rules” about DL construction 
are included. 

Section 2 discusses data mining and the use of a 
genetic program as a data mining function.  Section 
3 examines one of the digital logic designs to be 
reverse engineered using genetic program based data 
mining.  Section 4 explains the genetic program’s 
terminal set, function set, and fitness function.  
Section 4 also gives detailed formulations of the rule 
fitness, fitness score, input-output fitness, and 
overall fitness.  Section 5 provides experimental 
results with detailed descriptions of the evolutionary 
properties.  Finally, section 6 provides conclusions. 

2 GP BASED DATA MINING 

Data mining is the efficient extraction of valuable 
non-obvious information embedded in a large 
quantity of data (Bigus 1996).  Data mining consists 
of three steps: the construction of a database that 
represents truth; the calling of the data mining 
function to extract the valuable information, e.g., a 
clustering algorithm, neural net, genetic algorithm, 
genetic program, etc; and finally determining the 
value of the information extracted in the second 
step, this generally involves visualization. 

When used for reverse engineering, the GP, 
typically data mines a database to determine a 
graph-theoretic structure, e.g., a system’s DL 
diagram or an algorithm’s flow chart or decision tree 
(Smith 2003a, 2003b, 2004).  The GP mines the 
information from a database consisting of input and 
output values, e.g., a set of inputs to a sensor and its 
measured outputs.  GP based data mining will be 
applied to the construction of the DLs described in 
sections 3 and 5. 

To use the genetic program it is necessary to 
construct terminal and function sets relevant to the 
problem.  Before the specific terminal and function 
sets for the reverse engineering problems are 
described, a more detailed description of one of the 
digital logic examples to be considered will be given 

in section 3. 

3 DIGITAL LOGIC TO BE 
REVERSE ENGINEERED 

The first DL design to be reverse engineered is 
given in prefix notation in (1) and is depicted 
diagrammatically in Figure 1, 
 

OR2 OR3DELAY AND3 H1 MAX_SIG123 H3 
SUM_SIG2 H2 DIFF SUM_SIG2 SUM_SIG123 

OR3DELAY AND3 H1 MAX_SIG123 H3 
SUM_SIG3 H2 DIFF SUM_SIG3 SUM_SIG123. 

 
 
(1) 

 
The notation is described in (Smith 2005) and 
summarized in this section.  This DL is not known 
to the GP.  The GP only has access to a database of 
input signals to the DL and measured output, as well 
as, a database of rules provided by experts for 
building the DL.   
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 

The DL consists of three input channels each 
with a sensor attached.  The sensors receive signals 
from sources one, two and three.  Only 
measurements from the central source in Figure 1 
are of interest.  Due to the geometry of the sources 
and properties of the sensors only sensor two can 
receive emissions from the central source that are 
significant.  Unfortunately, sensor two’s 
measurement may be corrupted by emissions from 
the other two sources.  The digital logic is 

Figure 1: The first DL to be reverse engineered. 
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constructed so that if there were significant 
corruption of sensor two’s measurements, then the 
final OR-gate returns unity, so the measurements 
can be ignored.   

There are a number of DL elements that are used 
repeatedly.  The DL components and signals will 
ultimately become elements of the GP’s terminal 
and function sets.  The sensors will receive an 
analog signal and convert it to a digital form, i.e., 
they will map real-valued input to the set of integers.  
A sampling window of size N is used, i.e., the signal 
is sampled every ∆t seconds for a total of N samples 
in that window.  The sample is indicated by the 
vector js

r
 in (2) with sampling beginning at time to.  

The j-subscript implies the signal originated in the jth 
source, where j=1,2,3, 
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The DL function, SUM, given explicitly in (3), 
represents the logarithmic sum of the absolute value 
of the time components of the digitized input that 
has been received for a single window of length N, 
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The elements labeled Hi, for i=1,2,3, are 

Heaviside step functions as given in (4).  If the input 
is greater than or equal to a threshold, τi, for i=1,2,3; 
then a value of unity is transmitted, otherwise a zero 
is transmitted, 
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The DL function, MAX, given in (5), returns the 

common logarithm of the maximum absolute value 
of the time components of the input signal for a 
single window of length N.  The element labeled 
DIFF, takes the difference between input to its first 
and second arguments as indicated in (5). 
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The DL function, OR3DELAY, takes only 

Boolean inputs, i.e., it expects zero or one as an 

input.  It waits until it has three consecutive inputs 
from three consecutive time windows, hence the “3” 
in its name.  Once it receives three consecutive 
inputs, it yields as an output the maximum of its 
inputs.  Also not depicted, but used in the GP’s 
function set are AND3DELAY, which takes three 
inputs of zero or one corresponding to three 
consecutive time windows and yields as output the 
minimum of its inputs.  Finally, the symbols labeled 
AND3, OR3, AND2, and OR2 are the conventional 
logical connectives AND and OR, with the numerical 
designation indicating the number of inputs 
expected, e.g., AND3 expects three Boolean inputs. 

The signals are additive, at any given time sensor 
two may record a superposition of the three sources’ 
transmissions, which is represented by s1(t)+ s2(t) + 
s3(t).  If the three sensors’ signals are of sufficient 
magnitude then this is characteristic of corruption 
and the final OR in Figure 1 returns unity. 

4 GP TERMINAL SET, FUNCTION 
SET AND FITNESS 

This section describes the GPs terminal set, function 
set, and the fitness functions.  The description is 
given in terms of DL elements and properties, but 
the genetic program based reverse engineering 
technique is very general and can be applied to any 
system that can be described in a graph theoretic 
language, e.g., decision processes described in terms 
of decision trees (Smith 2003a, 2003b, 2004). 

The terminal set consists of the following 
elements: 
 

T={SUM_SIG123, MAX_SIG123, 
SUM_SIG2, MAX_SIG2, SUM_SIG3, 

MAX_SIG3}, 
 

 
(7) 

where 
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MAX_SIG2 = MAX( 2s
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SUM_SIG3 = SUM( 3s
r

), (12) 
 

MAX_SIG3 = MAX( 3s
r

). (13) 
 



All sensor measurements begin at time, to. 
The function set consists of the following 

elements: 
 

F={AND3, OR3, AND2, OR2, 
AND3DELAY, OR3DELAY, H1, H2, H3, 

DIFF}. 

(14) 

 
The function AND3DELAY is not used for the DL 
under consideration.  By including it, the GP’s 
ability to discriminate against extraneous functions 
is emphasized. 

The DL design to be evolved by the GP is given 
in (1).  The GP’s ability to do this will be 
determined largely by the fitness function and the 
underlying databases to be discussed. 

As with all GPs there must be a fitness function 
for evaluation of the evolving population of 
chromosomes.  The fitness function, referred to as 
the overall fitness (OF) denoted as OFf  is actually 
the sum of two other fitness functions.  These 
functions are the rule fitness (RF) and the input-
output fitness (IOF) denoted as RFf  and IOFf , 
respectively.  The rule fitness is given in (15) where 
the indicator function, iI is unity if the ith rule is 
satisfied and zero otherwise, and iv is the value of 
the ith rule.  Table 1 provides a small subset of the 12 
rules used. 
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Let jDL denote the jth element of the evolving 

population of chromosomes within the GP for 
psm,,2,1j K= where psm is the population size, i.e., 

the number of chromosomes.  Let each jDL consists 
of an OR2 or AND2 that connects two subgraphs, 
denoted as leftDLj _  and rightDLj _ .  Let 

( )ς_jDLl   be the length, i.e., the number of nodes 

in ς_jDL , for { }rightleft,∈ς .  If ( )ς_jDLl  is 
greater than or equal to 20 then the parsimony 
pressure, ( )ςα _jp DLl⋅  is subtracted from the rule 
fitness followed by division by 100, ultimately 
yielding the rule score, denoted as RSg .  This 
subtraction is done if either ( )leftDLl j _  or 

( )rightDLl j _  exceeds 20.  The quantity pα  is 
referred to as the parsimony coefficient (Smith 
2005).  The rule score is expressed compactly as   
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where the Heaviside step function χ takes the value 
unity for non-negative arguments and is zero 
otherwise.  If the rule score exceeds the rule 
threshold denoted as, RTκ then and only then is the 
input-output fitness evaluated.  By forcing the rule 
score to exceed a threshold before the input-output 
fitness is evaluated a great deal of computational 
complexity is avoided. 

Let TDL denote the true digital logic diagram 
that underlies the SD used to construct the input-
output database.  For the examples considered in this 
paper let there be three signals.  The input-output 
database is assumed to have the following structure 
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where 
k
jS is the three time window input from the jth 

source for the kth  input; { }1,0Bk ∈ is the kth  output 

from TDL for k=1,2,…, m, i.e.,  
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Table 1: Subset of the rule set for computational GP 
experiments 
 

R1: If either OR3DELAY or AND3DELAY are present 
during rule fitness evaluation add 51 =ν . 
R2: If AND3 or OR3 are present during fitness 
evaluation add 52 =ν . 

 

 
 
 
 
 
 



 The input-output fitness for the jth chromosome, 
jDL , is defined as 
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The overall fitness, OFf , for the jth chromosome 

can be written as 
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It is important to recall that in actual 

implementation, the input-output fitness is only 
evaluated if the rule fitness is greater than or equal 
to the rule threshold.  Selectively evaluating the 
input-output fitness greatly reduces the 
computational complexity and hence the run-time of 
the GP. 

5 DATA MINING RESULTS 

In this section two different DL schemes data 
mined by the GP are considered.  The two examples 
presented here are representative of the many 
experiments that have been conducted to show the 
effectiveness of the GP based data mining procedure 
presented in this paper.  The first is the DL 
represented in (1) and also in Figure 1.  This DL will 
assume the value of TDL for the discussion below.  
Using various databases too large to reproduce here 
and different random number generator seeds, the 
GP was able to reverse engineer (1) in no more than 
76 GP generations.  The different number of 
generations and amounts of CPU time required 
reflects the effect of different input-output databases 
and also the random number generator seeds.  One 
database may constrain the evolutionary process 
more than another resulting in fitness values that 
over time push the population more rapidly 
toward TDL .  Also, since the initial population is 
generated randomly; and crossover, mutation, 
architecture altering steps (Smith 2005) (AAS) and 
symmetrical replication (Smith 2005) (SR) have 
random aspects, a change in the seed of the random 
number generator can also impact run-time. 

To get a feel for the evolutionary process it is 
useful to examine some intermediate generations 
that lead to TDL .  For the case in which (1) is 
reverse engineered in 76 generations the elite 
chromosomes found for different generations are 
provided in Table 2 with the 76th generation 
reproducing the correct chromosome given in (1). 

The chromosomes entered into Table 2 reflect 
some of the characteristics observed during the 
evolutionary process.  From the first generation 
forward the GP is able to find best candidates that 
have an OR2 at the end of the chromosome.  The 
presence of two DIFF operators in the first 
generation is also promising.  The best chromosome 
for the first generation is much too short when 
compared to the desired result. 

New innovations are found in generation 25 in 
that both arguments of both DIFFs use MAX 
functions as well as the SIG123 structure.  Even 
though it is expected that both arguments will 
ultimately use SUM functions, the use of a common 
function for both arguments may show evolution in 
the proper direction.  Both DIFF operators are 
preceded by H2 which is what is found in (1).  Even 
with these innovations the best chromosome of 
generation 25 is far from the correct result.   

All generations after the 26th have elite 
chromosomes that have underlying graphs 
isomorphic to the final solution.  The GP’s effort 
from generation 27 through 76 involves finding a 
solution with the proper node labels.  Various rows 
in the input-output (IO) database, i.e., (17) 
contribute to proper labeling, e.g., if a certain row in 
the database is deleted then it is likely the final GP 
solution would not have proper threshold labeling.  
An improper threshold value is undesirable from the 
standpoint of trying to reproduce the exact digital 
logic.  If the goal is to produce an input signal that 
yields unity as an output then even with the 
threshold value wrong, as long as the input signal 
has sufficient energy to take into account 
uncertainty, then the desired output is obtained.  In 
conclusion, the ultimate cost of information 
uncertainty in this case is a small amount of 
additional power. 

The best chromosome of the 50th generation is 
far closer to (1).  The MAX functions in the 
arguments of the DIFF have been replaced by SUM 
functions.  The arguments of the DIFF operators are 
the ones for the final result and the output of both 
DIFFs is passed into H2 as found in (1).  In this 
chromosome replacing H1 MAX_SIG2 with H3 
SUM_SIG2 and H1 MAX_SIG3 with H3 SUM_SIG3 
would yield the correct result.  Finally, the desired 



result is found in generation 76.   
For a second example consider the DL given 

below in (21) as TDL , i.e., truth,    
 
OR2 OR3DELAY AND3 H1 SUM_SIG123 
H3 MAX_SIG2 H2 DIFF MAX_SIG2 
MAX_SIG123 OR3DELAY AND3 H1 

SUM_SIG123 H3 MAX_SIG3 H2 DIFF 
MAX_SIG3 MAX_SIG123. 

 
 

(21) 

 
The GP’s evolutionary process for inverting (21) is 
summarized in Table 3. 

This example is similar to (1), in fact if in (1) the 
MAX operations are replaced by the SUM operation 
and SUM replaced by MAX, then (21) is obtained.  
Given that (1) and (21) only differ in labeling of the 
underlying graphs it is anticipated that the GP based 
evolutionary processes that yield (1) and (21) would 
be similar.  This anticipation is born out, but there 
are differences in the evolutionary processes.  One 
significant difference is that the chromosome in (21) 
is evolved in a smaller number of generations than 
the one found in (1).  There is nothing that is 
obvious about the rule set or input-output data based 
used for both chromosomes that would favor one 
over the other.  Experimentation seems to indicate 
the difference in the number of generations required 
is related to the seed of the random number 
generator.  

Just as with the example in Table 2, the best 
chromosome of the first generation has an OR2 at 
the end, but is otherwise too short and far removed 
from the correct answer.  By the eighth generation 
the “H2 DIFF MAX_SIG2 MAX_SIG123” structure 
has emerged.  The best chromosome of the 16th 
generation preserves the best features of previous 
generations and also makes use of an OR3DELAY, 
but it still has many defects.  For all generations 
after the 26th generation the elite chromosome has 
two subgraphs that take a form that can be derived in 
closed form.  The elite chromosome of the 30th 
generation has many correct labels and incorrect 
ones.  It illustrates how evolution can fluctuate from 
generation to generation producing individuals of 
higher fitness, but departing significantly from the 
true DL in form.  Finally in generation 46 the GP 
converges having produced the correct DL design. 

As referenced above it is possible to derive 

closed form exact results for the set of digital logic 
diagrams or set of DL maps referred to as DLS that 
exactly maximize the rule score.  The graph 
underlying each DL diagram is isomorphic in the 
graph-theoretic sense to the graph underlying TDL .  
Furthermore, for certain signal types it is possible to 
write down closed form exact results for the image 
sets under these DL maps.  From the image set 
closed form exact entries for an input-output 
database can be derived that maximize the overall 
fitness.   

It is found that by the 26th generation in the 
computational studies of Tables 2 and 3 that the GP 
finds a member of DLS.  After the 26th generation 
the GP’s elite solutions remain within DLS each 
generation.  The GP spends the rest of the 
generations until it converges, re-labeling the 
underlying elite graphs eventually evolving TDL . 

By selectively eliminating rules from the rule set, 
of which Table 1 is a subset or eliminating rows 
from the derived IO database, the effect of 
uncertainty can be studied.  The elimination of rules 
represents an approach to the determining the effect 
of linguistic imprecision, i.e., the inability of experts 
to provide crisp rules.  The random loss of a row or 
rows from the IO database provides a model of the 
effect of uncertainty born of randomness during 
measurement. 

The implications for the two kinds of uncertainty 
can be significantly different.  Loss of a rule or rules 
can greatly expand the set of DL maps that will 
maximize the rule-score.  If all the rules are 
maintained, but rows are lost from the IO database, 
then the ultimate solution can be quite different than 
truth, but the underlying graph will still be 
isomorphic to TDL .  In many instances the real 
effect of loss of rows from the IO database is to 
interchange thresholds on the resulting DL map.  
When this occurs input signals can still be designed 
that will produce a desirable output.  The resulting 
signal will be mathematically similar to the true DL, 
but more signal power will be required.  So the 
effect of certain kinds of uncertainty is the 
requirement for more power.  So the DL map has an 
uncertainty insensitivity (UI) up to power.

 
 
 
 
 
 
 



Table 2: Evolution of the DL depicted in Figure 1 
 

Generation Best Chromosome found in the Population for the Indicated Generation 
1 OR2 H2 DIFF SUM_SIG123 MAX_SIG123 OR2 DIFF MAX_SIG2 H1 MAX_SIG2 SUM_SIG3 

25 OR2 AND3DELAY OR3 H3 MAX_SIG2 H2 SUM_SIG123 H2 DIFF MAX_SIG2 MAX_SIG123 
AND3DELAY OR3 H2 SUM_SIG2 SUM_SIG3 H2 DIFF MAX_SIG2 MAX_SIG123  

40 OR2 OR3DELAY AND3 H1 MAX_SIG2 H1 MAX_SIG123 H2 DIFF SUM_SIG2 SUM_SIG123 
AND3DELAY AND3 H3 SUM_SIG3 H1 SUM_SIG2 H2 DIFF SUM_SIG2 SUM_SIG3 

50 OR2 OR3DELAY AND3 H1 MAX_SIG2 H1 MAX_SIG123 H2 DIFF SUM_SIG2 SUM_SIG123 
OR3DELAY AND3 H1 MAX_SIG3 H1 MAX_SIG123 H2 DIFF SUM_SIG3 SUM_SIG123 

76 OR2 OR3DELAY AND3 H1 MAX_SIG123 H3 SUM_SIG2 H2 DIFF SUM_SIG2 SUM_SIG123 
OR3DELAY AND3 H1 MAX_SIG123 H3 SUM_SIG3 H2 DIFF SUM_SIG3 SUM_SIG123  

 
Table 3: Evolution of the DL given in (21). 

 

Generation Best Chromosome found in the Population for the Indicated Generation 
1 OR2 SUM_SIG2 AND3DELAY DIFF SUM_SIG2 SUM_SIG123 
8 OR2 AND3DELAY DIFF SUM_SIG3 SUM_SIG123 AND3DELAY H2 DIFF MAX_SIG2 MAX_SIG123 

16 OR2 AND3DELAY OR3 H2 SUM_SIG2 SUM_SIG3 H2 DIFF MAX_SIG2 MAX_SIG123 OR3DELAY H2 
OR3 H2 SUM_SIG2 SUM_SIG3 H2 DIFF MAX_SIG2 MAX_SIG123 

30 OR2 OR3DELAY AND3 H2 MAX_SIG123 H3 MAX_SIG2 H2 DIFF MAX_SIG2 MAX_SIG123 
AND3DELAY AND3 H3 SUM_SIG2 H1 SUM_SIG123 H2 DIFF SUM_SIG2 SUM_SIG3 

46 OR2 OR3DELAY AND3 H1 SUM_SIG123 H3 MAX_SIG2 H2 DIFF MAX_SIG2 MAX_SIG123 
OR3DELAY AND3 H1 SUM_SIG123 H3 MAX_SIG3 H2 DIFF MAX_SIG3 MAX_SIG123 

6 SUMMARY AND CONCLUSIONS 

Genetic program (GP) based data mining has 
proven effective for reverse engineering the complex 
digital logic underlying sensor devices (SDs) when 
the original design specifications for these devices 
are unavailable and invasive study of the systems is 
impossible. 

The database that was subjected to data mining 
consisted of known input to the digital logic (DL), 
the associated measured output and a set of rules 
provided by experts relating to their assumptions 
about the digital logic.  It is found that having a set 
of expert rules in the database is essential; the 
measured output of the digital logic is rarely 
sufficient to uniquely reverse engineer the design.  

Experimental observation and theoretical 
analysis of the effects of uncertainty show that even 
when there is a significant reduction in the quality of 
input-output measurement information: the DL map 
evolved by the GP will still carry enough 
information for the design of signals with specific 
properties.  The creation of these signals is 
considered of greater importance than having the 
exact DL design for the SD.  The signals frequently 
relate to the determination of control rules for 
platform or multiplatform automation. 
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